
CS 61A Structure and Interpretation of Computer Programs
Fall 2021 Midterm 1 Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

Exam generated for <EMAILADDRESS> 3

1. (8.0 points) What Would Python Display?

(a) (4.0 points)

Assume the following code has been executed.

def os(ki):
t = -1

i = 5
t = 7
while i > 3:

t = i - 4 and i + 4
os(i - 2)
i, j = i - 1, i * 2
s = i

i. (1.0 pt) What value is bound to i in the global frame?

3

ii. (1.0 pt) What value is bound to j in the global frame?

8

iii. (1.0 pt) What value is bound to s in the global frame?

3

iv. (1.0 pt) What value is bound to t in the global frame?

0

Exam generated for <EMAILADDRESS> 4

(b) (4.0 points)

The function tik takes an argument tok and returns a function insta that takes an argument gram. The
insta function prints tok and gram on the same line separated by a space and has no return statement.
Its implementation has been omitted intentionally.

def tik(tok):
"""Returns a function that takes gram and prints tok and gram on a line.

>>> tik(5)(6)
5 6
"""
def insta(gram):

... # The implementation of this function has been omitted.
return insta

i. (4.0 pt) What would the interactive Python interpreter display upon evaluating the expression:

tik(tik(5)(print(6)))(print(7))

6
5 None
7
None None

Exam generated for <EMAILADDRESS> 5

2. (5.0 points) 31 Cal Olympians

The environment diagram below was generated by code that is only partially provided to the right of the
diagram. All of the relevant code needed to fill in the blanks in the environment diagram is shown. Line
numbers have been omitted intentionally.

Exam generated for <EMAILADDRESS> 6

(a) (1.0 pt) Which of these could fill in blank (a)?

 3

5

7

2021

(b) (1.0 pt) Which of these could fill in blank (b)? (The parent of the function returned in f3.)

parent=Global

parent=f1

parent=f2

 parent=f3

(c) (1.0 pt) Which of these could fill in blank (c)?

parent=Global

parent=f1

parent=f2

 parent=f3

(d) (1.0 pt) Which of these could fill in blank (d)?

3

5

7

 2021

(e) (1.0 pt) Which of these could fill in blank (e)?

 3

5

7

2021

Exam generated for <EMAILADDRESS> 7

3. (27.0 points) All Hail the Stone

Definition: A hailstone sequence begins with a positive integer n. If n is even, divide it by 2. If n is odd, triple
it and add 1. Repeat until 1 is reached. For example, the hailstone sequence starting at 3 is 3, 10, 5, 16, 8, 4, 2,
1. Assume all hailstone sequences are finite and end with 1.

Assume the following code has been executed.

from operator import add, mul

def next_hail(k):
"""Return the next element in a hailstone sequence."""
assert k > 1
if k % 2 == 0:

return k // 2
else:

return 3 * k + 1

(a) (8.0 points)

Implement hail_min, which takes a positive integer n and a one-argument function measure. It returns
the element of the hailstone sequence starting with n for which calling measure on the element returns the
smallest value.

If more than one element of the sequence has the smallest measure value, return the earliest one.

def hail_min(n, measure):
"""Return the element k of the hailstone sequence starting with n for which
measure(k) is smallest. In case of a tie, return the earliest element.

>>> hail_min(5, lambda k: -k) # Among 5, 16, 8, 4, 2, 1; 16 is largest
16
>>> hail_min(8, lambda k: -k) # Among 8, 4, 2, 1; 8 is largest
8
>>> hail_min(3, lambda k: abs(k - 7)) # Among 3, 10, 5, 16, 8, 4, 2, 1; 8 is closest to 7
8
>>> hail_min(9, lambda k: abs(k - 7)) # Among 9, 28, 14, 7, 22, ...; 7 is closest to 7
7
>>> hail_min(8, lambda k: abs(k - 3)) # 4 and 2 are both close to 3, but 4 is earliest
4
"""

apple = _________
(a)

while n > 1:

n = next_hail(n)

if _________:
(b)

(c)

return _________
(d)

Exam generated for <EMAILADDRESS> 8

i. (1.0 pt) Fill in blank (a).

n

ii. (3.0 pt) Fill in blank (b).

measure(n) < measure(apple)

iii. (1.0 pt) Fill in blank (c).

apple = n

iv. (1.0 pt) Which of these could fill in blank (d)? Check all that apply.

2 n

� apple

2 measure(n)

2 measure(apple)

2 min(n, apple)

2 min(measure(n), measure(apple))

v. (2.0 pt) What element of the hailstone sequence starting with n larger than 1 is returned by the
expression:

hail_min(n, lambda k: 1 - k % 2)

Always n (the first element)

Always 1 (the last element)

The largest odd element

The largest even element

The smallest odd element

The smallest even element

 The first odd element

The first even element

Exam generated for <EMAILADDRESS> 9

(b) (6.0 points)

Definition: An accumulator function is a function that takes two integers and returns an integer. It can
serve as the second argument to hail_tally below.

def hail_tally(n, f):
"""Accumulate the elements of the hailstone sequence starting with n using
accumulator function f.

>>> hail_tally(3, add) # 3 + 10 + 5 + 16 + 8 + 4 + 2 + 1 = 49
49
>>> hail_tally(10, max) # Largest of 10, 5, 16, 8, 4, 2, 1
16
"""
total = 0
while n > 1:

total = f(total, n)
n = next_hail(n)

return f(total, 1)

Implement sum_some, which takes a one-argument function select and returns an accumulator function
f. For positive integer n, the call hail_tally(n, f) returns the sum of the elements of the hailstone
sequence starting with n for which calling select on the element returns a true value.

def sum_some(select):
"""Return an accumulator function that sums all k for which select(k) is a true value.

>>> def below_ten(k):
... return k < 10
>>> sum_below_ten = sum_some(below_ten)
>>> hail_tally(3, sum_below_ten) # [3] + 10 + [5] + 16 + [8] + [4] + [2] + [1]
23
"""
def f(total, k):

if _________:
(a)

return _________(total, k)
(b)

return _________
(c)

(d)

i. (2.0 pt) Fill in blank (a).

select(k)

Exam generated for <EMAILADDRESS> 10

ii. (1.0 pt) Which of these could fill in blank (b)? Check all that apply.

� add

2 mul

2 sum_some

2 total

2 f

2 hail_tally

iii. (1.0 pt) Which of these could fill in blank (c)?

k

 total

total + k

hail_tally(k, sum_some)

hail_tally(total, sum_some)

hail_tally(total + k, sum_some)

iv. (2.0 pt) Fill in blank (d).

return f

Exam generated for <EMAILADDRESS> 11

(c) (5.0 points)

Implement hail_odd_sum, a function that takes a positive integer n and returns the sum of all odd elements
in the hailstone sequences starting with n.

Important: Your solution must include sum_some.

You may also call other functions defined previously in this question.

def hail_odd_sum(n):
"""Sum the odd elements of the hailstone sequence starting with n.

>>> hail_odd_sum(3) # [3], 10, [5], 16, 8, 4, [1]; 3 + 5 + 1 = 9
9
>>> hail_odd_sum(34) # 34, [17], 52, 26, [13], 40, 20, 10, [5], ..., [1]
36
"""
return _________(_________, _________)

(a) (b) (c)

i. (1.0 pt) Fill in blank (a).

hail_tally

ii. (1.0 pt) Fill in blank (b).

n

iii. (3.0 pt) Fill in blank (c).

sum_some(lambda k: k % 2 == 1)

Exam generated for <EMAILADDRESS> 12

(d) (8.0 points)

Definition: To call a function f repeatedly on a sequence of values x, y, z means to use f in a nested call
expression in which each element of the sequence is passed in as a single argument in order: f(x)(y)(z).

Implement hail, which takes an integer n greater than 1. It returns a function that returns True when
called repeatedly on all of the remaining elements of the hailstone sequence starting with n. It returns
False when called repeatedly on any sequence that differs from the hailstone sequence starting with n.

Hint : You may call next_hail (and other functions defined previously in this question).

def hail(n):
"""Return a function that returns True if called repeatedly on the remaining
elements of the hailstone sequence starting with n and False otherwise.

>>> hail(3)(10)(5)(16)(8)(4)(2)(1)
True
>>> hail(3)(4) # The next element should have been 10.
False
>>> hail(3)(10)(5)(16)(8)(1) # The next element should have been 4.
False
"""

assert n > 1

def check(k):

if _________:
(a)

return True

if _________:
(b)

return False

return _________
(c)

return _________
(d)

i. (2.0 pt) Fill in blank (a).

n == 2 and k == 1

ii. (2.0 pt) Fill in blank (b).

next_hail(n) != k

Exam generated for <EMAILADDRESS> 13

iii. (2.0 pt) Fill in blank (c).

hail(k)

iv. (2.0 pt) Fill in blank (d).

check

Exam generated for <EMAILADDRESS> 14

No more questions.

